SPHENIX Clusterizer Overview ••• Brandon McKinzie EMCal Workfest 12 August 2016 ### The Island Algorithm at CMS #### Procedure: - 1. Store "seed" towers. Defined by $E_T > E_T^{\text{thresh}}$ - 2. Remove seeds adjacent to higher energy ones. - 3. Starting from highest energy seed: - a. Move both directions in φ until rise in energy or hole. - b. Move one step in η . Repeat φ search. - i. Continue along η until energy rise or hole. ### Single-Particle Event Simulations General procedure used for *all* slides that follow: - 1. Use PHG4SimpleEventGenerator in <u>Fun4All_G4_sPHENIX.C</u> to generate one particle in one event. - a. Particles of interest: electrons, photons, and neutral pions. - b. Generated particle fixed at $(\eta, \phi) = (0, 0)$ for simplicity. - c. Set particle $p_{_{\rm T}}$ to fixed value. Explored here: 5 GeV/c < $p_{_{\rm T}}$ < 60 GeV/c. - d. Build cluster(s) in RawClusterBuilderIA::process_event(). - 2. Repeat many times for different values of generated particle p_T using bash script (clunky!). #### Example Cluster Visualizations - Electrons ### Example Cluster Visualizations - Photons #### Example Cluster Visualizations - Neutral Pions # Exploring Cuts: E_T cluster/E_T true vs. Num Towers ### Clustered E_T vs. Generated E_T For each of e^{-} , γ , and π^{0} : - Generate one single-particle event - $(\eta, \varphi) = (0, 0)$ - \circ known p_{T} - noise included - Accept clusters with NTowers > 6. - Plot the cluster E_T that was found #### Comparison with Simple 5x5 Clusterizer For each of e^{-} , γ , and π^{0} : - Collect seed towers. - Construct simple 5x5 clusters centered on each seed. ### Varying Seed E_T Threshold ### Varying Seed E_T Threshold - Electrons ### Varying Seed E_T Threshold - Photons ## Varying Seed E_T Threshold - Neutral Pions #### Current Status - Integrating 'RawClusterBuilderIA' repository (<u>link</u>) into coresoftware. - Writing more plotting macros to analyze output clusters (link to plotting repo). - Documenting work/code as much as possible should others read/modify it in the future.